What is Dataguard?
Data Guard provides a comprehensive set of services that create, maintain, manage, and monitor one or more standby databases to enable production Oracle databases to survive disasters and data corruptions. Data Guard maintains these standby databases as copies of the production database. Data Guard can be used with traditional backup, restoration, and cluster techniques to provide a high level of data protection and data availability.
What is DG Broker?
DG Broker “it is the management and monitoring tool”.
Oracle dataguard broker is a distributed management framework that automates and centralizes the creation , maintenance and monitoring of DG configuration.
All management operations can be performed either through OEM, which uses the broker (or) broker specified command-line tool interface “DGMGRL”.
What is the difference between Dataguard and Standby?
Dataguard :
Dataguard is mechanism/tool to maintain standby database.
The dataguard is set up between primary and standby instance .
Data Guard is only available on Enterprise Edition.
Standby Database :
Physical standby database provides a physically identical copy of the primary database, with on disk database structures that are identical to the primary database on a block-for-block basis.
Standby capability is available on Standard Edition.
What are the differences between Physical/Logical standby databases? How would you decide which one is best suited for your environment?
Physical standby DB:
As the name, it is physically (datafiles, schema, other physical identity) same copy of the primary database.
It synchronized with the primary database with Apply Redo to the standby DB.
Logical Standby DB:
As the name logical information is the same as the production database, it may be physical structure can be different.
It synchronized with primary database though SQL Apply, Redo received from the primary database into SQL statements and then executing these SQL statements on the standby DB.
We can open “physical stand by DB to “read only” and make it available to the applications users (Only select is allowed during this period). we can not apply redo logs received from primary database at this time.
We do not see such issues with logical standby database. We can open the database in normal mode and make it available to the users. At the same time, we can apply archived logs received from primary database.
For OLTP large transaction database it is better to choose logical standby database.
Explain Active Dataguard?
11g Active Data Guard
Oracle Active Data Guard enables read-only access to a physical standby database for queries, sorting, reporting, web-based access, etc., while continuously applying changes received from the production database.
Oracle Active Data Guard also enables the use of fast incremental backups when offloading backups to a standby database, and can provide additional benefits of high availability and disaster protection against planned or unplanned outages at the production site.
What is a Snapshot Standby Database?
11g Snapshot Standby Database
Oracle 11g introduces the Snapshot Standby database which essentially is an updateable standby database which has been created from a physical standby database.
We can convert a physical standby database to a snapshot standby database, do some kind of testing on a database which is a read write copy of the current primary or production database and then finally revert it to it’s earlier state as a physical standby database.
While the snapshot standby database is open in read-write mode, redo is being received from the primary database, but is not applied.
After converting it back to a physical standby database, it is resynchronized with the primary by applying the accumalated redo data which was earlier shipped from the primary database but not applied.
Using a snapshot standby, we are able to do real time application testing using near real time production data. Very often we are required to do production clones for the purpose of testing. But using snapshot standby databases we can meet the same requirement sparing the effort,time,resources and disk space.
Snapshot Standby Database (UPDATEABLE SNAPSHOT FOR TESTING)
A snapshot standby database is a fully updatable standby database that is created by converting a physical standby database into a snapshot standby database.
Like a physical or logical standby database, a snapshot standby database receives and archives redo data from a primary database. Unlike a physical or logical standby database, a snapshot standby database does not apply the redo data that it receives. The redo data received by a snapshot standby database is not applied until the snapshot standby is converted back into a physical standby database, after first discarding any local updates made to the snapshot standby database.
What is the Default mode will the Standby will be, either SYNC or ASYNC?
ASYNC
Dataguard Architechture?
Data Guard Configurations:
A Data Guard configuration consists of one production database and one or more standby databases. The databases in a Data Guard configuration are connected by Oracle Net and may be dispersed geographically. There are no restrictions on where the databases are located, provided they can communicate with each other.
Dataguard Architecture
The Oracle 9i Data Guard architecture incorporates the following items:
• Primary Database - A production database that is used to create standby databases. The archive logs from the primary database are transfered and applied to standby databases. Each standby can only be associated with a single primary database, but a single primary database can be associated with multiple standby databases.
• Standby Database - A replica of the primary database.
• Log Transport Services - Control the automatic transfer of archive redo log files from the primary database to one or more standby destinations.
• Network Configuration - The primary database is connected to one or more standby databases using Oracle Net.
• Log Apply Services - Apply the archived redo logs to the standby database. The Managed Recovery Process (MRP) actually does the work of maintaining and applying the archived redo logs.
• Role Management Services - Control the changing of database roles from primary to standby. The services include switchover, switchback and failover.
• Data Guard Broker - Controls the creation and monitoring of Data Guard. It comes with a GUI and command line interface.
Primary Database:
A Data Guard configuration contains one production database, also referred to as the primary database, that functions in the primary role. This is the database that is accessed by most of your applications.
Standby Database:
A standby database is a transactionally consistent copy of the primary database. Using a backup copy of the primary database, you can create up to nine standby databases and incorporate them in a Data Guard configuration. Once created, Data Guard automatically maintains each standby database by transmitting redo data from the primary database and then applying the redo to the standby database.
The types of standby databases are as follows:
Physical standby database:
Provides a physically identical copy of the primary database, with on disk database structures that are identical to the primary database on a block-for-block basis. The database schema, including indexes, are the same. A physical standby database is kept synchronized with the primary database, through Redo Apply, which recovers the redo data received from the primary database and applies the redo to the physical standby database.
Logical standby database:
Contains the same logical information as the production database, although the physical organization and structure of the data can be different. The logical standby database is kept synchronized with the primary database through SQL Apply, which transforms the data in the redo received from the primary database into SQL statements and then executes the SQL statements on the standby database.
What are the services required on the primary and standby database ?
The services required on the primary database are:
• Log Writer Process (LGWR) - Collects redo information and updates the online redo logs. It can also create local archived redo logs and transmit online redo to standby databases.
• Archiver Process (ARCn) - One or more archiver processes make copies of online redo logs either locally or remotely for standby databases.
• Fetch Archive Log (FAL) Server - Services requests for archive redo logs from FAL clients running on multiple standby databases. Multiple FAL servers can be run on a primary database, one for each FAL request. .
The services required on the standby database are:
• Fetch Archive Log (FAL) Client - Pulls archived redo log files from the primary site. Initiates transfer of archived redo logs when it detects a gap sequence.
• Remote File Server (RFS) - Receives archived and/or standby redo logs from the primary database.
• Archiver (ARCn) Processes - Archives the standby redo logs applied by the managed recovery process (MRP).
• Managed Recovery Process (MRP) - Applies archive redo log information to the standby database.
What is RTS (Redo Transport Services) in Dataguard?
It controls the automated transfer of redo data from the production database to one or more archival destinations. The redo transport services perform the following tasks:
a) Transmit redo data from the primary system to the standby systems in the configuration.
b) Manage the process of resolving any gaps in the archived redo log files due to a network failure.
c) Automatically detect missing or corrupted archived redo log files on a standby system and automatically retrieve replacement archived redo log files from the
primary database or another standby database.
What are the Protection Modes in Dataguard?
Data Guard Protection Modes
This section describes the Data Guard protection modes.
In these descriptions, a synchronized standby database is meant to be one that meets the minimum requirements of the configured data protection mode and that does not have a redo gap. Redo gaps are discussed in Section 6.3.3.
Maximum Availability
This protectionmode provides the highest level of data protection that is possible without compromising the availability of a primary database. Transactions do not commit until all redo data needed to recover those transactions has been written to the online redo log and to at least one synchronized standby database. If the primary database cannot write its redo stream to at least one synchronized standby database, it operates as if it were in maximum performance mode to preserve primary database availability until it is again able to write its redo stream to a synchronized standby database.
This mode ensures that no data loss will occur if the primary database fails, but only if a second fault does not prevent a complete set of redo data from being sent from the primary database to at least one standby database.
Maximum Performance
This protectionmode provides the highest level of data protection that is possible without affecting the performance of a primary database. This is accomplished by allowing transactions to commit as soon as all redo data generated by those transactions has been written to the online log. Redo data is also written to one or more standby databases, but this is done asynchronously with respect to transaction commitment, so primary database performance is unaffected by delays in writing redo data to the standby database(s).
This protection mode offers slightly less data protection than maximum availability mode and has minimal impact on primary database performance.
This is the default protection mode.
Maximum Protection
This protection mode ensures that zero data loss occurs if a primary database fails. To provide this level of protection, the redo data needed to recover a transaction must be written to both the online redo log and to at least one synchronized standby database before the transaction commits. To ensure that data loss cannot occur, the primary database will shut down, rather than continue processing transactions, if it cannot write its redo stream to at least one synchronized standby database.
Because this data protection mode prioritizes data protection over primary database availability, Oracle recommends that a minimum of two standby databases be used to protect a primary database that runs in maximum protection mode to prevent a single standby database failure from causing the primary database to shut down.
How to delay the application of logs to a physical standby?
A standby database automatically applies redo logs when they arrive from the primary database. But in some cases, we want to create a time lag between the archiving of a redo log at the primary site, and the application of the log at the standby site.
Modify the LOG_ARCHIVE_DEST_n initialization parameter on the primary database to set a delay for the standby database.
Example: For 60min Delay:
ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=stdby_srvc DELAY=60';
The DELAY attribute is expressed in minutes.
The archived redo logs are still automatically copied from the primary site to the standby site, but the logs are not immediately applied to the standby database. The logs are applied when the specified time interval expires.
Steps to create Physical Standby database?
1.Take a full hot backup of Primary database
2.Create standby control file
3.Transfer full backup, init.ora, standby control file to standby node.
4.Modify init.ora file on standby node.
5.Restore database
6.Recover Standby database
(Alternatively, RMAN DUPLICATE DATABASE FOR STANDBY DO RECOVERY can be also used)
7.Setup FAL_CLIENT and FAL_SERVER parameters on both sides
8.Put Standby database in Managed Recover mode
What are the DATAGUARD PARAMETERS in Oracle?
Set Primary Database Initialization Parameters
----------------------------------------------
On the primary database, you define initialization parameters that control redo transport services while the database is in the primary role. There are additional parameters you need to add that control the receipt of the redo data and log apply services when the primary database is transitioned to the standby role.
DB_NAME=chicago
DB_UNIQUE_NAME=chicago
LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,boston)'
CONTROL_FILES='/arch1/chicago/control1.ctl', '/arch2/chicago/control2.ctl'
LOG_ARCHIVE_DEST_1=
'LOCATION=/arch1/chicago/
VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_2=
'SERVICE=boston LGWR ASYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE
LOG_ARCHIVE_FORMAT=%t_%s_%r.arc
LOG_ARCHIVE_MAX_PROCESSES=30
Primary Database: Standby Role Initialization Parameters
FAL_SERVER=boston
FAL_CLIENT=chicago
DB_FILE_NAME_CONVERT='boston','chicago'
LOG_FILE_NAME_CONVERT= '/arch1/boston/','/arch1/chicago/','/arch2/boston/','/arch2/chicago/'
STANDBY_FILE_MANAGEMENT=AUTO
Prepare an Initialization Parameter File for the Standby Database
-----------------------------------------------------------------
Create a text initialization parameter file (PFILE) from the server parameter file (SPFILE) used by the primary database; a text initialization parameter file can be copied to the standby location and modified. For example:
CREATE PFILE='/tmp/initboston.ora' FROM SPFILE;
Modifying Initialization Parameters for a Physical Standby Database.
DB_NAME=chicago
DB_UNIQUE_NAME=boston
LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,boston)'
CONTROL_FILES='/arch1/boston/control1.ctl', '/arch2/boston/control2.ctl'
DB_FILE_NAME_CONVERT='chicago','boston'
LOG_FILE_NAME_CONVERT= '/arch1/chicago/','/arch1/boston/','/arch2/chicago/','/arch2/boston/'
LOG_ARCHIVE_FORMAT=log%t_%s_%r.arc
LOG_ARCHIVE_DEST_1= 'LOCATION=/arch1/boston/
VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_2= 'SERVICE=chicago LGWR ASYNC VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE
STANDBY_FILE_MANAGEMENT=AUTO
FAL_SERVER=chicago
FAL_CLIENT=boston
Data Guard provides a comprehensive set of services that create, maintain, manage, and monitor one or more standby databases to enable production Oracle databases to survive disasters and data corruptions. Data Guard maintains these standby databases as copies of the production database. Data Guard can be used with traditional backup, restoration, and cluster techniques to provide a high level of data protection and data availability.
What is DG Broker?
DG Broker “it is the management and monitoring tool”.
Oracle dataguard broker is a distributed management framework that automates and centralizes the creation , maintenance and monitoring of DG configuration.
All management operations can be performed either through OEM, which uses the broker (or) broker specified command-line tool interface “DGMGRL”.
What is the difference between Dataguard and Standby?
Dataguard :
Dataguard is mechanism/tool to maintain standby database.
The dataguard is set up between primary and standby instance .
Data Guard is only available on Enterprise Edition.
Standby Database :
Physical standby database provides a physically identical copy of the primary database, with on disk database structures that are identical to the primary database on a block-for-block basis.
Standby capability is available on Standard Edition.
What are the differences between Physical/Logical standby databases? How would you decide which one is best suited for your environment?
Physical standby DB:
As the name, it is physically (datafiles, schema, other physical identity) same copy of the primary database.
It synchronized with the primary database with Apply Redo to the standby DB.
Logical Standby DB:
As the name logical information is the same as the production database, it may be physical structure can be different.
It synchronized with primary database though SQL Apply, Redo received from the primary database into SQL statements and then executing these SQL statements on the standby DB.
We can open “physical stand by DB to “read only” and make it available to the applications users (Only select is allowed during this period). we can not apply redo logs received from primary database at this time.
We do not see such issues with logical standby database. We can open the database in normal mode and make it available to the users. At the same time, we can apply archived logs received from primary database.
For OLTP large transaction database it is better to choose logical standby database.
Explain Active Dataguard?
11g Active Data Guard
Oracle Active Data Guard enables read-only access to a physical standby database for queries, sorting, reporting, web-based access, etc., while continuously applying changes received from the production database.
Oracle Active Data Guard also enables the use of fast incremental backups when offloading backups to a standby database, and can provide additional benefits of high availability and disaster protection against planned or unplanned outages at the production site.
What is a Snapshot Standby Database?
11g Snapshot Standby Database
Oracle 11g introduces the Snapshot Standby database which essentially is an updateable standby database which has been created from a physical standby database.
We can convert a physical standby database to a snapshot standby database, do some kind of testing on a database which is a read write copy of the current primary or production database and then finally revert it to it’s earlier state as a physical standby database.
While the snapshot standby database is open in read-write mode, redo is being received from the primary database, but is not applied.
After converting it back to a physical standby database, it is resynchronized with the primary by applying the accumalated redo data which was earlier shipped from the primary database but not applied.
Using a snapshot standby, we are able to do real time application testing using near real time production data. Very often we are required to do production clones for the purpose of testing. But using snapshot standby databases we can meet the same requirement sparing the effort,time,resources and disk space.
Snapshot Standby Database (UPDATEABLE SNAPSHOT FOR TESTING)
A snapshot standby database is a fully updatable standby database that is created by converting a physical standby database into a snapshot standby database.
Like a physical or logical standby database, a snapshot standby database receives and archives redo data from a primary database. Unlike a physical or logical standby database, a snapshot standby database does not apply the redo data that it receives. The redo data received by a snapshot standby database is not applied until the snapshot standby is converted back into a physical standby database, after first discarding any local updates made to the snapshot standby database.
What is the Default mode will the Standby will be, either SYNC or ASYNC?
ASYNC
Dataguard Architechture?
Data Guard Configurations:
A Data Guard configuration consists of one production database and one or more standby databases. The databases in a Data Guard configuration are connected by Oracle Net and may be dispersed geographically. There are no restrictions on where the databases are located, provided they can communicate with each other.
Dataguard Architecture
The Oracle 9i Data Guard architecture incorporates the following items:
• Primary Database - A production database that is used to create standby databases. The archive logs from the primary database are transfered and applied to standby databases. Each standby can only be associated with a single primary database, but a single primary database can be associated with multiple standby databases.
• Standby Database - A replica of the primary database.
• Log Transport Services - Control the automatic transfer of archive redo log files from the primary database to one or more standby destinations.
• Network Configuration - The primary database is connected to one or more standby databases using Oracle Net.
• Log Apply Services - Apply the archived redo logs to the standby database. The Managed Recovery Process (MRP) actually does the work of maintaining and applying the archived redo logs.
• Role Management Services - Control the changing of database roles from primary to standby. The services include switchover, switchback and failover.
• Data Guard Broker - Controls the creation and monitoring of Data Guard. It comes with a GUI and command line interface.
Primary Database:
A Data Guard configuration contains one production database, also referred to as the primary database, that functions in the primary role. This is the database that is accessed by most of your applications.
Standby Database:
A standby database is a transactionally consistent copy of the primary database. Using a backup copy of the primary database, you can create up to nine standby databases and incorporate them in a Data Guard configuration. Once created, Data Guard automatically maintains each standby database by transmitting redo data from the primary database and then applying the redo to the standby database.
The types of standby databases are as follows:
Physical standby database:
Provides a physically identical copy of the primary database, with on disk database structures that are identical to the primary database on a block-for-block basis. The database schema, including indexes, are the same. A physical standby database is kept synchronized with the primary database, through Redo Apply, which recovers the redo data received from the primary database and applies the redo to the physical standby database.
Logical standby database:
Contains the same logical information as the production database, although the physical organization and structure of the data can be different. The logical standby database is kept synchronized with the primary database through SQL Apply, which transforms the data in the redo received from the primary database into SQL statements and then executes the SQL statements on the standby database.
What are the services required on the primary and standby database ?
The services required on the primary database are:
• Log Writer Process (LGWR) - Collects redo information and updates the online redo logs. It can also create local archived redo logs and transmit online redo to standby databases.
• Archiver Process (ARCn) - One or more archiver processes make copies of online redo logs either locally or remotely for standby databases.
• Fetch Archive Log (FAL) Server - Services requests for archive redo logs from FAL clients running on multiple standby databases. Multiple FAL servers can be run on a primary database, one for each FAL request. .
The services required on the standby database are:
• Fetch Archive Log (FAL) Client - Pulls archived redo log files from the primary site. Initiates transfer of archived redo logs when it detects a gap sequence.
• Remote File Server (RFS) - Receives archived and/or standby redo logs from the primary database.
• Archiver (ARCn) Processes - Archives the standby redo logs applied by the managed recovery process (MRP).
• Managed Recovery Process (MRP) - Applies archive redo log information to the standby database.
What is RTS (Redo Transport Services) in Dataguard?
It controls the automated transfer of redo data from the production database to one or more archival destinations. The redo transport services perform the following tasks:
a) Transmit redo data from the primary system to the standby systems in the configuration.
b) Manage the process of resolving any gaps in the archived redo log files due to a network failure.
c) Automatically detect missing or corrupted archived redo log files on a standby system and automatically retrieve replacement archived redo log files from the
primary database or another standby database.
What are the Protection Modes in Dataguard?
Data Guard Protection Modes
This section describes the Data Guard protection modes.
In these descriptions, a synchronized standby database is meant to be one that meets the minimum requirements of the configured data protection mode and that does not have a redo gap. Redo gaps are discussed in Section 6.3.3.
Maximum Availability
This protectionmode provides the highest level of data protection that is possible without compromising the availability of a primary database. Transactions do not commit until all redo data needed to recover those transactions has been written to the online redo log and to at least one synchronized standby database. If the primary database cannot write its redo stream to at least one synchronized standby database, it operates as if it were in maximum performance mode to preserve primary database availability until it is again able to write its redo stream to a synchronized standby database.
This mode ensures that no data loss will occur if the primary database fails, but only if a second fault does not prevent a complete set of redo data from being sent from the primary database to at least one standby database.
Maximum Performance
This protectionmode provides the highest level of data protection that is possible without affecting the performance of a primary database. This is accomplished by allowing transactions to commit as soon as all redo data generated by those transactions has been written to the online log. Redo data is also written to one or more standby databases, but this is done asynchronously with respect to transaction commitment, so primary database performance is unaffected by delays in writing redo data to the standby database(s).
This protection mode offers slightly less data protection than maximum availability mode and has minimal impact on primary database performance.
This is the default protection mode.
Maximum Protection
This protection mode ensures that zero data loss occurs if a primary database fails. To provide this level of protection, the redo data needed to recover a transaction must be written to both the online redo log and to at least one synchronized standby database before the transaction commits. To ensure that data loss cannot occur, the primary database will shut down, rather than continue processing transactions, if it cannot write its redo stream to at least one synchronized standby database.
Because this data protection mode prioritizes data protection over primary database availability, Oracle recommends that a minimum of two standby databases be used to protect a primary database that runs in maximum protection mode to prevent a single standby database failure from causing the primary database to shut down.
How to delay the application of logs to a physical standby?
A standby database automatically applies redo logs when they arrive from the primary database. But in some cases, we want to create a time lag between the archiving of a redo log at the primary site, and the application of the log at the standby site.
Modify the LOG_ARCHIVE_DEST_n initialization parameter on the primary database to set a delay for the standby database.
Example: For 60min Delay:
ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=stdby_srvc DELAY=60';
The DELAY attribute is expressed in minutes.
The archived redo logs are still automatically copied from the primary site to the standby site, but the logs are not immediately applied to the standby database. The logs are applied when the specified time interval expires.
Steps to create Physical Standby database?
1.Take a full hot backup of Primary database
2.Create standby control file
3.Transfer full backup, init.ora, standby control file to standby node.
4.Modify init.ora file on standby node.
5.Restore database
6.Recover Standby database
(Alternatively, RMAN DUPLICATE DATABASE FOR STANDBY DO RECOVERY can be also used)
7.Setup FAL_CLIENT and FAL_SERVER parameters on both sides
8.Put Standby database in Managed Recover mode
What are the DATAGUARD PARAMETERS in Oracle?
Set Primary Database Initialization Parameters
----------------------------------------------
On the primary database, you define initialization parameters that control redo transport services while the database is in the primary role. There are additional parameters you need to add that control the receipt of the redo data and log apply services when the primary database is transitioned to the standby role.
DB_NAME=chicago
DB_UNIQUE_NAME=chicago
LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,boston)'
CONTROL_FILES='/arch1/chicago/control1.ctl', '/arch2/chicago/control2.ctl'
LOG_ARCHIVE_DEST_1=
'LOCATION=/arch1/chicago/
VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_2=
'SERVICE=boston LGWR ASYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE
LOG_ARCHIVE_FORMAT=%t_%s_%r.arc
LOG_ARCHIVE_MAX_PROCESSES=30
Primary Database: Standby Role Initialization Parameters
FAL_SERVER=boston
FAL_CLIENT=chicago
DB_FILE_NAME_CONVERT='boston','chicago'
LOG_FILE_NAME_CONVERT= '/arch1/boston/','/arch1/chicago/','/arch2/boston/','/arch2/chicago/'
STANDBY_FILE_MANAGEMENT=AUTO
Prepare an Initialization Parameter File for the Standby Database
-----------------------------------------------------------------
Create a text initialization parameter file (PFILE) from the server parameter file (SPFILE) used by the primary database; a text initialization parameter file can be copied to the standby location and modified. For example:
CREATE PFILE='/tmp/initboston.ora' FROM SPFILE;
Modifying Initialization Parameters for a Physical Standby Database.
DB_NAME=chicago
DB_UNIQUE_NAME=boston
LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,boston)'
CONTROL_FILES='/arch1/boston/control1.ctl', '/arch2/boston/control2.ctl'
DB_FILE_NAME_CONVERT='chicago','boston'
LOG_FILE_NAME_CONVERT= '/arch1/chicago/','/arch1/boston/','/arch2/chicago/','/arch2/boston/'
LOG_ARCHIVE_FORMAT=log%t_%s_%r.arc
LOG_ARCHIVE_DEST_1= 'LOCATION=/arch1/boston/
VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_2= 'SERVICE=chicago LGWR ASYNC VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE
STANDBY_FILE_MANAGEMENT=AUTO
FAL_SERVER=chicago
FAL_CLIENT=boston
No comments:
Post a Comment